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the initial condition for which can be written in the form p (0) = 0. Solving this 
equation, we obtain the following expression for the function fr (tl: 

Ir(r)=B (%,=&!Xp(-G)] 

and from this it follows that 
00 

lim c(<, z)=&\ exp 
z--f0 

1 - + (SP)‘l;i e-Pp-“Idp (A6) 
0 

The result (AG).obtained together with the first boundary condition of (A31,. enables us 
to determine the diffusive flux on the surface of the sphere which is equal, with act - 

ordance with the second boundary condition of (2), to li limz-+o c (5, z), and this 
leads to formula (5). 

The author thanks Iu. P. Gupalo and Iu. S. Riazantscv for unceasing interest and 
valuable discussions. 
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A three-dimensional nonstationary problem of spherical elastic wave diff - 
raction by a smooth solid wedge with arbitrary apex angle is considered. An 

exact solution in the form of a sum of two terms, the known acoustic sol- 

ution and an additional part describing the influence of elasticity, and caused 
by the appearance of additional longitudinal and transverse diffraction waves, 
is obtained by the method of integral transforms with extraction of the sing - 

ularities in the neighborhood of an edge. This latter term essentially distin- 

guishes the elastic from the acoustic solution. The particular case of an 

incident wave with a jump in the stresses at the front is investigated in detail. 
The corresponding acoustic problem has been examined in Cl-41 , where 

the solution in elementary functions was first obtained in [23 . Only the sol- 

ution for the plane wave diffraction problem [5] is known for a wedge in the 
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elastic case. Solutions found earlier for plane diffraction problems by a 
smooth wedge IS] and a smooth half-plane C71, which agree with the solution 
of the corresponding acoustic problems, are not true because of neglecting the 
condition at the edge, which indeed resulted in nonintegrable stresses in the 

neighborhood of the edge. 

1. Let us consider an elastic medium with the propagation velocities U and 6 
for longitudinal and transverse waves filling a domain 7 > 0, 0 < 8 < n f I, 
-oo (2 (00 and bounding the wedge (n I I < 0 < 2~) on whose side walls 

8 = 0, 0 = n / 2 are given the conditions: 21s = 0, CTQ~ = ~0, = 0, where 

r, 8, Z are cylindrical coordinates (the z -axis coincides with edge of the wedge ), 
Ve is the displacement vector component and oer, oez are stress tensor components. 

At the instant ‘t = -rO (a = at, t is the time, r. > 0) , a source of a spherical 
elastic longitudinal wave with the potential [8] 

To = J (a + 70 - R) / R, R = 122 + rs + To2 - 2rr, cos (e --&))I'~~ (0) 

whose front reaches the wedge surface at the instant T* (--TO < IG* < 0) starts toact 

at the point (rO, i3,, 0) , where f (a) is an arbitrary function satisfying the conditions 

of applying the Laplace transform and f (‘r) c 0 at ‘t < 0. The wedge introduces 
the perturbation u z (Up, ue, &jr described by a long~~dinal Cp and two scalar 
transverse. ‘$19 $2 potentials by means of the formulas [81 

into the field of incident wave displacement. 

As can be confirmed, the boundary conditions on the wedge will hence be satis- 
fied if compliance with the conditions drp/ df3 = - &po/ de, $i = 0 and 
&pa I Xl = 0 at 0 = 0, n / t is required. Conse~ently, taking into account 

that perturbations do not occur prior to the instant z = z* , we obtain the following 
three systems of equations, boundary and initial conditions to determine VP, 91 and Qs: 

Ag! = a+p 1 a+ (A = a2 / aP + r-la j ar + Pa2 / d@ + a2 / a23 (1.3) 

acp / de = -a~oidO for e=o, n/Z, cp=O at z<a* 

A~j=y’a~j/~’ (~=a/tt>1,j=1,2) (1.4) 

q1 = av, / ae = 0 for 8 = 0, n / I, $j = 0 at ‘t < z* 

These three systems are mutually connected by the following condition * ) on the 
wedge edge : 

u=const+O(rt), e>O for r-40 (1.5) 

which assures integrability of the stresses (as r -+ 0) and uniqueness of the solution of 
the problem formulated. It is assumed that condition (1. 5) issatisfied uniformly,.inr, 0. Z. 

* 1 See Kostrov, B. V. , Some Dynamical Problems of Mathematical Elasticity Theory. 
Kandidat Dissertation, Moscow State University, 1964. 
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Moreover, in solving the problem we consider that l/s < I < 1 since the solution 

for 1 > 1 can be obtained from the symmetric part (relative to the bisector plane 
of the wedge 1 of the solution found for lie < I < I. 

2, Applying a two-sided Laplace transform in T and z. successively to (1.3 ) 

and (1.41, and then expanding the transforms of the reqlrired potentials ?j5* (p, r, 8, S) 
and Gz* @, r, 8, S) in a cosine series, and &* (p, r, 8, S) in a sine series in the 

segment [O, ZC/ 11 1 we obtain the following second-order ordinary differential equ- 
ations to determine the coefficients of these expansions : 

w2an + fn (r) 

dabnj 
-+ 

db,j n2Z2 
cw s - 7 b,j = x26-j (I=*, 2) 

x/z 
(p*(p,r,%s)= a, cos nl0, a, = 2nT! 

s 
Cp* COS~~&I 

?%=I 0 

(n = 0, I,&. ..) 

ii* (p, r, 8, s) =(21ti)-~ 5 T (p, r, 0, 2) e-%2 

q (p, r, 8,z) = (2ni)--1 7 rp (a, r, 8,z) e-p+& 
-co 

$j* (p, r, 8, S) =: (23Ti)-1 7 qj (p, I', 0, z) e-%z 

j)j (p, r, 8,~) = (2~ci)-~ 7 $j (T, r, 0,2) dzat 

(2.3 

1 Re s 1 < Re p, o = (~2 - ~2)‘h, x = (~2~2 - .+‘z 

oi) 

h* (p, f, 8, S) = f (p) 070 f e-=-w-la2 = 27 (p) epwo (pw) 
-co 

f 6) * 7 (p), p = [r2 + PO2 - 2rr, cos (f3 - &))I’/* 



850 v. B. muchikov 

Here KCZ (s) is the Macdonald function of order a of the argument S. (The in- 

equality Re p > 0 follows from the fact that integration with respect to 7 in the 

two-sided Laplace transform occurs for T > -r. since the source does not act for 

-ro ). Slits to separate the branches of the functions 6~’ and X in the s plane 

ar: zde from the points S = I!IY ( f rom the points s = &YP) for X ) to infinity 

along the rays arg s = arg p and arg s = n + arg p, and the o and x 

branches are selected so that o = p and x = yp for s = 0. Then it is seen 

that ‘Re o > 0, Re x > 0 for 1 Be s / ( Re p. Solving (2. 1) and (2. 2) we obtain 

a n = A,K,r (1.0) + B,,Inl (ro) + F, (r) (2.3) 

F,(r) = - Knl p) i [,I (20) f, (z) zdz - I,I (To) 5 &I (50) f,(x)sdx 
0 T 

b,j = CnjK,l (m) -I DlLjJnl (r~) (j =z 1, 2) (2.4) 

Here ICZ (S) is a modified Bessel function of the first kind of order CL Using 

asymptotic expressions for the cylinder functions 

Ka (4 - In 1 (2s)l’k”, I, (s) N (2ns)-‘~‘eS, ] s 1 + 00, 

IargsI<n/2 

we find that F, (r) --t 0 as r -+ 00. Since the perturbations are propagated at a 

finite velocity, we then assume that 1 T 1 < CR-’ le-PR 1, I $j ! < CR-l 1 e-pR 1 

as R --too, where C is independent of r, 0, z. We hence obtain that a,, --t 0, 

bnj +O Xi r +W. We then find from (2.3) and (2.4 B,~D,J~O. 

To determine the remaining coefficients A, and C,j 
by assuming that it is conserved even for the coefficients 

, let US use condit~ (1. 5) 

ii,* and uzfi of the 

cosine expansions of the transforms li,* and &* and the coefficients iiOn* of 

the sine series expansion of the transform &I* : 

ii,,* = const + 0 (P), iizn* = con& + 0 (Is), k* = const + 0 (P) 

x/l xl1 
-* 
Urn = 2ZK’ \ ii,* cos nl0d0, 

i 
iii, = 21~~1 1 a,* cos n&j0 (2.5) 

0 

(n =O,l,Z,. .) 
r/l 

i& = 2zn-1 s iis*sinnZ0df3 (n=1,2.3,...) 
0 

00 Co 

uk 
-*= 

s 
e-szdz 

s 
us-P+dr (k = r. 0, z) 

(e > O,Y-+ 0) 
--0D 

Using the expression (1.2) in the estimates (2. 5), we obtain a system of three ecwtiom 
for each n (n = 0, 1, 2, . . .) as r-h0 

da,, I dr + r-‘nib,, + sdb,, I dr = const + 0 (P) (2.6) 
sa, - x2b,a = const + 0 (15) (e> 0) 

-nPan - db,, 1 dr - r’4b,,nl = const + 0 (F) 
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from which the coefficients A, and C nj in (2.3) and (2.4) for ‘on and b,j should 
be found (for n = 0 the system of three equations degenerates into a system of two 

equations for a~ and b,, because b,, = 0). To determine A,, and c,f 

we use the asymptotic expressions for the cylinder functions 1, (s) and K, (s) as a + 0 

I, (s) = (s / 2)” I r (1 + a) + 0 (F) (2.7) 

Ko (s) = -1n s +,O (I), K, (.s) = s-l -+ 0 (S In S) 

~KcW = WP/s~ + 
{ 

r(-a)(~/Z)~fO(s*-~). O<a<i 
o(s2_“) 

, a>1 

It can be shown by using (2.7) that the following asymptotic estimates for F, (r) 
are satisfied as r +& 

(in particular, we have F,,, (r) s 6 a~ I= 1/z since fan (r) E 0) in this case>. 

Substituting (2.3) and (2.4) into (2. 6) and using’the asymptotic estimates (2.7) 

and (2.8), it can be noted that conditions (2.6) will be satisfied for ,n = G and 

n > 2 if we set A, E C,j c 0. In the case n = 1 we obtain the 

following system from (2. 6) : 

Sf’-l + Tr”’ + 0 (1) = const + 0 (P), WF’ + 0 (+) =; 

const + 0 (9) 
&-l-I - Tr*-l + 0 (1) = const + 0 (P) (13 > 0) (2.9) 

S = -2F-x I’ (1 + Z) [A,& - C,,X-~ + sC,,x-‘1 
T = MI - 2-9’ (1 - !)[A ,w’ + C,& + s&J 
w = 2”1r (z)[A,so-’ - G-l C,,] 

We find $ = 0, T = 0, W = 0 from (2.9). which yields the following 

expressions for A,, Czl and C,,,: 

A, = &s-’ SfCla, c,, = yspss-fcla 

Consequently, by using (2.10) we obtain for I@*, I&* and ?&* 

QI - * = s-lysps sin 10Kl (nc)C,,, q2* = cos 10Kt (rx)CIg 

f2‘lO) 

(2.11) 
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The sum of the terms with F,, (?z = 0, 1, 2, . . .> in the expression for F$* 
fro,!> (2. 11) is the Laplace transform (in +C and z f for the perturbed solution of the 
corresponding acoustic problem ~1. This is quite simple to prove if it is noted that 

the original of this sum firstly satisfies the system (1. 3). and secondly, it can be shown 

that this original satisfies a condition assuring the uniqueness of the solution of the 

acoustic problem (for sufficiently smooth functions f(r)) cg1 

i3 (r&j + Q-p,) i & = 0 (11, ra (Cp@ $- cpl) / ar = 0 (I), r - 0 

Thus, by adding the transform of the incident spherical wave, and applying the 

inverse Laplace transforms in S and P, we obtain (~D,-(p~+(p) 

. , 
c&m 

C.-f&xl bp+im 

ql = yt-$$$ 1 eP’p2dp \ sm1C12Kl (rx) es2 ds 
c*--im b&as 

c.+ioa be+im 

By using the results in [S], the acoustic solution cpo = cp,, + rpl can here be 

represented as 

cp,= fy:yI,Q(x+ r2-~-‘* ,r,8)- 
(2.13) 

RSr$[~~~~ilp(“+ l;a-~~~zZ ,r,Q)dz 
-. 

where Q (T, I‘, 0). in (.2. 13) is the solution of the acoustic problem of diffraction 

of a plane wave ‘7 fz + r cos (6 - 0,)l / PO by the wedge under consideration, 
which has the following form according to [9] : 

Q (a, I”, e) = q (r - a) {a (e - 0,)q IT + r cos (0 - e,)l + 
a: (0 + eo>r IT + r cos (6 + e”)*l}ro-f + q (z - 

r)n’“r,-l (arctg h, + arctg A_) 

h, = (1 - y”) sin tn 

(1 + p, eos In - 2y’ co.9 1 (e * 0,) 
, Y+_[(+)2_1]9 

rt (4 = 1, x > 0; q (x) = 0, x < 0 

o(Q)=l, 181<n; a(O)=O, n<181<nlZ 

0(8+23-w)=0.(e), (e+e,)*=e+e,+2~dz 

Here the values of the arctangents are taken in the interval (0, a), and the integer 
m (m =o, -1) is selected so that the inequality --n / I ( (6 + $)* < rr f I 

will always be satisfied at the point of physical space under consideration. 
As follows from (2. 121, the elastic terms supplementing the acoustic solution drop 

out only for 0, = ar / (21) (case of symmetry relative to the bisector plane of the 
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wedge 1 and for 2 + 1 (wave reflection from a plane wall 1. By using (2.12) it can 
be shown that the displacements are bounded and the stresses are integrable in the 
neighborho~ of the wedge edge. 

By using the change of variable q = 5.1 p the expressions (2.12) are repre - 
sented as (if we set b, = 0) 

(2.14) 

E (p, q) -5: K,(pr 61 - qa)(l - qa)“2~0ePPz, 
5 (p, 4) .= Kl (pr I/y* - qa) (ya - q%)’ ’ *-l @oeppr 

The contour L is shown in Fig. 1, where a,, = rr I 2 - arg P and the slits 
from the s plane go over into slits along 
the real axis between the points & y and 

t 1 to infinity in the 9 plane (and 

(Y” - @)‘A = y, (1 - qs>“* = Iforq = 0). 

It is sufficient to consider (7. 14) for 
z > 0 since CD and 91 are even while 

q2 is an odd function of z (this is proved 

easily by using (2.14)). Then it can be 

shown for z > 0 that the contour L in 

the expression for d, can be deformed into 

the curve LO, and the contour L in the 

Pig, 1 expressions for 91 and $2 into the curve 
L,. Pointson these curves satisfy theequations 

Lo: Im Iqz - (r + ro)(i - qv1 = 0 

L,: Im [qz - r (y2 - qy - r’o (1 - q”)‘Q = 0. 

Both curves, whose shape in the q plane is shown in Pig. I, are symmetric re - 
lative to the real axis and have the same asymptotes forming the angles & ~1 with 
the real axis : tg a, = - (r + ro) / z upon removal from the origin, The points 

of intersection (lo and q1 of ~~ and L, with the real axis are determined, 

respectively, from the equations 

z + (f + r&j (1 - q2)-‘1* = 0, 
z + rq (y2 - q2)+ + r,q (1 - q2)-+ = 0 
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The function _V, (9, z, r) s 92 - (r + r,)(l - 97’14 is real on the curve 
LU and takes its maximum value on L,, at the point qO: rY, (9”, z, r) = 

- [z? + (r + r $T~~. 
Similarly, the function N; (9, :, r) E 92 - r (Y2 - 9’)“* - ~IJ (1 - 92)1’2, 

is real on L, and takes its maximum value on L, at the point 91: N, (91, Z, r) = 
--R, (K, = H, (2, I.)). As z 3 0 the values of 90 and 91 tend to 
zero, and the curves L,. and L1 go over into the imaginary axis in the limit. 

Consequently, (2. 14) are represented for 2 > 0 as 

0 = (Pa + cos ze s aI)1 (1 - q2)r’2-1:rdq ~i’(x)U(x, q)dx 
I 10 -0 

$I = y2 sin 10 \: aI (y2 - q2)’ ‘w’ dq 5’ f’ (x) V (x, q) dx 
JA -0 

(2.15) 

I$~ = cos Ze 1 CD1 (y” - q2)’ ‘2-6’4 q d9 i’ f (x) V (x, q) dx 
Lt 

v (5, 4) = b,, 1 + 
[ 

(xl- x)2 + 2 (xl -32) (rvm + r. 1/l - q2) 

2rr, I/(J~ - q2) (1 - q2) I 
r- 

x0 = z + r0 + 42 - (r i- 4 V 1 - q2 -- 
x1 =T+rO+ qz-r~y2-qQ.L-rO~1 -q2 

Here Pr-fil, (2) is th e L egendre function of the first kind and the derivative 1’ (z) 

in the expressions Cp and $1 is understood in the generalized sense. 

The operational calculus formula for the transform Kl (ps) Kt (pq) eP(*+@, which 

is written with an error in both the tables DO] ( formula 60, section 16, chapter 5 > 
and the handbook Cll] where the Laplace-Carson transform (formula 29. 205) is given, 

was used to obtain (2. 15). To obtain its correct expression, let us represent this 

transform as 

& UC, (~4 Z_, (pq) - K, (PSI Z1 t w,l e’@+” 

by using the property K-l (s) = K, (s) and K, (s) = n [Z+ (s) - I, (s)] / (2 sin 1 n). 
Then by using the operational calculas formula from Cl21 we obtain 

K, ( RS) K, (pq)e”(Sf*).+ & P1_,, 
13 

(7 + 29) (t + 2q) 

w-srl 2 w --1 rlw 1 IargsI<c Iqql<n 
(1 is any complex number ) 

For max x0 (9) < 0 (max 50 (q) = 50 (~0) = T -I- TO - [z’ + (r + rJ2P) 
we find 0 = Cpn from (2. 15) and we have ‘$1 = $2 = 0 for max z, (q) < 0 
(max z1 (q) = x1 (Q~) = *c i- r. - i?,) . Therefore, z -+ r. = _ [z2 + 

(1. + rJ21’/2 and 7 + r. =: Ii, are, respectively, the equations of the longi - 
tudinai and transverse diffraction wave fronts. The maps of the perturbed domains in 

the section z : const, (T > (Z2 .-/ ro2)“’ - ro) with and without shade are shown 

in Figs. 2a and 2b, respectively, where 
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ABOA =n - ‘3o,~COA=2nIZ--n-080, <GOA=n+&, 
(the angles are measured counter-clockwise from the ray OA 1, and the wavefronts 
1 -5 are given respectively by the equations : 

1) T i- T” = El (13), 2) z -t- 1.0 = R (--XI), 3) T + ro = 
1z2 + (r + riJ)W, 4) t + r’o = RI, 5) 7 + fo - R (2n / I - Q), R (e) = 
R = [22 + r2 t rc2 - 2 “” cos (0 - 8,)l’~~ 

(the coordinate 0 is measured counter-clockwise from the rayOA , fl = 2rc - n / 1). 
The longitudinal and transverse diffraction wave fronts are described by the 

equations r=x,r=E./y in the z = 0 plane, 

Fig. 2 

It should be noted that taking account of the condition on the edge results pri - 
marily in a qualitative distinction between the solution of the elastic problem and the 
solution of the corresponding acoustic problem since transverse diffraction waves appear 
in addition to the additional longi~dinal diffraction wave Q, - vat ,where both 

types ‘91 and q2, are distinctive by the direction of displacement vector polarization, 
The additional perturbations 0 - cp,, $r and q2 describe the influence of the 
elasticity, 

Setting f (T) = roq (z) in (2. 14) and then letting r. - m, it can be shown 

that V2 - 0, and Q and’ $I yield the solution of the problem of diffraction of a 

plane longitudinal step wave by a wedge, in the limit. This solution agrees with the 

known solution f51 to notation accuracy (if slight inaccuracies are corrected for tp 

and $ in (2.9) from C5J : if the lost factor l/a is taken into account in the additional 
terms to the acoustic solution, and the following misprints are corrected ; replace one 
of the factors COB k6, by co8 k0 in the expression for 4, and the factor (b I a)k 
by (b J a)-k in the expression for Q 1. We have 

(2.i6) 



856 V. B. Poruchikov 

Here ‘~0~ is the solution of the corresponding acoustic problem. 

8. Let us examine the most interesting incident wave case in detail : (1. 1) 
when f (T) = -ror2v (T) / 2. The stress on the front of such a compression wave 
undergoes a finite jump : [on,1 = G,,+ - s,,- = --(h + 2P)ro (T + ro)-*, 

where h and ~1 are Lam& parameters, n is the normal to the wavefront, and the plus 

and minus signs, respectively, refer to domains behind and ahead of the wavefront (for 
ro + 00 this wave goes over into a plane wave with the potential 

90 = -42. + r cos (0 - eopq [‘G + r cos (e - 0”)] / 2). 

To investigate the solution it is sufficient to consider the case 0 < 0, < 
Jill- JC (Fig. ‘La) in which all three are possible perturbed motion domains : a se - 

lected wave domain (0 ( 0 < TC - eo, ](-c + ro)s - z2]‘tX - Fo < r, ‘C + To > 

R (-6)), a diffraction domain (r < [ (z + Fo)’ - z2]‘/z - r,) and a shade 
domain (n + 80 < f3 < Jr / I). 

The reflected wave potential 

cp= -ro [z + r’o - R (4)Pq IT + r,, - R (-6)12-1R-1(-f3) 

is added to the incident wave potential upon passage through the reflected wavefront 

2, and we have a finite jump in the normal stress on the reflected wavefront equal to 

[o,,] = ---TO (h + 24('~ + ,0)-l (b ecause aa@ 1 an2 undergoes a discontinuity). 
The strains, and therefore the stresses , are discontinuous upon passage through 

the longitudinal diffraction wavefront 3, but the derivative of the strain with respect to 

the normal direction to the front de,,, / an undergoes a discontinuity of the second 
kind (because @(II I dn3 undergoes such a discontinuity >, This derivative is finite 

approaching the front from the domain ahead of the front but has a singuIarity on the 
order of e”/l for an approach from the domain behind the front. Hence, both the 

acoustic solution ‘pa and the additional elastic member have singularities on the order 
of E+. 

The strains are continuous at the front of the transverse wave 4 but the derivatives 

of the strain components with respect to the normal %sn / an and &, / an undergo 
discontinuities of the second kind (where v is measured along the line of intersection 

of the transverse wavefront and the plane 0 = const ) since the derivatives 

a++,,1 dns and &pa I an4 , respectively, undergo discontinuities at this front, 

These derivatives are finite for an approach from outside (t i- ro < RI) and have a 
singularity of order e-‘f~. for an approach from within (T + r. > RI). 

It is seen from the investigation presented that the additional elastic part of the 
solution is commensurate in magnitude with the diffraction part of the acoustic solution 
not only in the neighborhood of the wedge edge but also near the diffraction wavefront 
3, and therefore, the elastic problem differs substantially from the acoustic problemnot 
only near the wedge edge, but in the whole diffraction domain r + r. < [(T + r0)2S..- 
.9]% :Teenerally. 

In the symmetric case (0, = n / (21)) curves of the stress distribution (-c~,s) 

as functions of r I rl are presented in Pig, 3 (r 1 is the coordinate of the point A 
in Kg. 2b j along a side face of the wedge OA in the zone z = 0 plane for the apex 

angle fl=n/6 and h I f~ = 2. 
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Fig. 3 

Curve I is given for the case of plane compression 
wave incidence. 

qJo=-m+4p sin2 (fi / 2)]-l X (3.1) 

[‘G + r cos ((3 - e,)lsq IT + 

r cos (0 - O,)I 

Curves 2 -5 are stress distributions on the 

wedge for ‘G I r,, = 0.5, 1.0, 2.0, 2.5, 
respectively. upon incidence of the spherical 
compression wave cpO = --rJF [2h + 

4p sin2(B/2)l-’ (T+~,--R)~ x 
T(.t +r, -R) 

which goes over into the plane wave (3. 1) as 

r'o--+C=. It is seen from a comparison be- 

tween the results obtained for plane and spher - 

ical waves that the influence of sphericity of the 

incident wave front grows with the lapse of time 

and the stress on the section of the wedge side 

wall becomes tens%e for z 2 ,270 If the 
physical contact properties are hence such that 

tensile stresses cannot be transmitted then the 

phenomenon of “peeling off” occurs, and therefore, the solution obtained for the prob- 

lem in this case (with the boundary conditions ve = 0, @r = cfez = 0) is suit - 

able up to a definite time rl, when tensile stresses first appear on some part of the 

wedge surface. Other boundary conditions must be posed on these parts of the surface 
starting with this time, 

As an analytical investigation and numerical computations show, tensile stresses 
appear for any wedge angle p < n in the symmetric case, and the time of their 
appearance TI grows without limit as p -+n and the stresses are always compres- 

sive in the limit case fi = n 

Let us note that in the absence of symmetry (00 # IC / (21)) there are cases 

when the tensile stresses exist at any time (as, for example, during diffractions by a 

smooth solid plate for 8, = rr / 2, when the tensile stresses on the shaded side 
appear simultaneously with the formation of a perturbed motion domain 1, 

It should here be mentioned that even when the physical contact properties do not 

permit transmission of the tensile stresses, the solution of the problem with tensile 

stresses can be given physical meaning if it is assumed that the elastic medium under 

consideration is already pre-compressed statically even before the beginning of the 
diffraction process, so that the resultant stresses on the contact turn out to be corn - 
pressive. 

In addition, let us note that the stress (Tee for both plane and spherical waves 
has a singularity on the order of rsr-2 upon approaching the wedge edge in the sym - 
metric case, 

4, A solution of the problem of diffraction of an elastic snherical wave by a 
wedge with apex angles p > n can be obtained from the solution with angles 
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p = 2x - n I I! (l/Z < I< I), satisfying the condition p < n. In fact, the 
symmetric part of the solution (2. 14) , relative to the bisector plane of the wedge (we 
use the notation 0” and qj”, i = 1, 2 ) satisfies the following conditions on that 

plane : aas / a@ = I+~” = a$,” 80 =0 and therefore, yields the solution of the prob- 
lem of diffraction with the apex angle pr = 2n - n / l,,where I, = 21 (1 < 1, ( 2). 

Here the angle fir satisfies the conditions ‘n < pr < 3a-r / 2. Again extracting the 
symmetric part from the solution with pi, we obtain the solution for fi2 = 2n - 

n.l 1, (2 < I, = 21, < 4), which satisfies the inequality 3n / 2 < fi2 < 7~ 1 4 
etc. After the n-th operation we obtain the solution for bn = 2x _ .n / 1, 

(2”’ < I, = 27 < 29, 
x.2". 

satisfying the condition 2n - n / 27-1 < Bn ( 2~ - 
ilrerefore, the solution can be obtained for any apex angle 

o<p<2n. 
fi within the limits 
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